Date/Time: 04-03-2018 - Tuesday - 05:00 PM - 07:00 PM
Mei Chen1 Huai Yang1

1, Peking University, Beijing, , China

Sticky super-hydrophobic surfaces are widely used in transportation without loss, micro-sample analysis, and micro-reactors. However, the state-of-the-art techniques can only functionalize a specific surface and usually involve tedious procedures and severe conditions, which greatly limit their application. Herein, a series of sticky super-hydrophobicity surfaces with high water contact angle and high water adhesive force, is facilely prepared by all solution processed method based on polymerization induced phase separation between liquid crystals (LCs) and epoxy resin, which produces layers of epoxy micro-spheres (EMSs) with nano-folds on the surface of a substrate. The morphologies and size distributions of EMSs are confirmed by scanning electron microscopy. Results reveal that the obtained EMSs coated-surface exhibits high apparent contact angle of 152.0o and high water adhesive force up to 117.6 μN. By varying the composition of the sample or preparing conditions, the sizes of the produced EMSs can be artificially regulated, and thus control the wetting properties and water adhesive behaviors. Also, the sticky super-hydrophobic surface exhibits excellent chemical stability as well as long-term durability. Water droplet transportation experiments further prove that the as-made surface can be effectively used as a mechanical hand for water transportation applications. Based on this, it is believed that the simple method proposed in this paper will pave a new way for producing a sticky super-hydrophobic surface and obtain a wide range of use.

Meeting Program

5:00 PM–7:00 PM Apr 3, 2018 (America - Denver)

PCC North, 300 Level, Exhibit Hall C-E