Date/Time: 04-04-2018 - Wednesday - 05:00 PM - 07:00 PM
Rahul Singhal1 Amir Omidwar1 Justin Fagnoni1 Peter LeMaire1

1, Central Connecticut State University, New Britain, Connecticut, United States

In recent years, interest in the development of alternative energy storage/conversion devices with high power and high energy densities has increased due to current high energy demands. Electrochemical capacitors or supercapacitors are attracting wide attention, because of their high-power density, excellent reversibility and long cycle life. Many researchers found Manganese dioxide (MnO2) as promising materials for supercapacitors applications because of its natural abundance, high theoretical capacity, low environmental toxicity, and cost effectiveness [1,2]. We have synthesized MnO2/graphene oxide (GO) materials at room temperature using deionized water as a solvent as reported earlier [3]. The XRD pattern show all distinguishable peaks at 2θ =12.82o, 18.22o, 25.78o, 28.74o, 37.64o, 42.10o, 49.80o, 56.34o, 60.34o, 65.52o and 69.68o, corresponding to (100), (200), (220), (310), (211), (301), (411), (600), (521), (002) and (541) crystal planes of a pure tetragonal α-MnO2 phase. Relatively rectangular CV curves without redox peaks indicate the ideal electrochemical reversibility and capacitive properties of the composite materials. The galvanostatic charge-discharge studies were performed at various currents e.g. 500 mA/g and between 1A/g - 5 A/g with an increment of 1A/g. The specific capacitance of MnO2/GO composite materials were found between 143 F/g at 500 mA/g and 105 F/g at 5A/g discharge current, respectively. The detailed results on electrochemical characterizations will be presented at MRS Spring 2018 meeting.

Meeting Program

5:00 PM–7:00 PM Apr 4, 2018 (America - Denver)

PCC North, 300 Level, Exhibit Hall C-E