Date/Time: 04-04-2018 - Wednesday - 05:00 PM - 07:00 PM
Xueqing Yang1

1, City University of Hong Kong, Kowloon, , China

N-doped graphitic carbon nanorods were synthesized by thermal transformation of zeolite imidazolate framework-8 (ZIF-8) nanorods. The one dimensional morphology and pore structure of the carbon nanorods were readily tuned by using amphiphilic surfactant of tri-block co-polymer Pluronic F127 as a soft template. The as-synthesized carbon nanorods exhibit an ultra-high surface area of up to 2088 m2 g-1 and a bimodal distribution of micro- and meso-porous structures. In addition, the Nitrogen-doping carbon nanorods provides pseudo-capacitance that promotes electrochemical performance, rending a high specific capacitance of up to 297 F g-1 at a current density of 0.5 A g-1 in the three-electrode system . An ultra-long cycle life was also demonstrated by recording a 97.26% preservation of capacitance after 104 cycles of charge-discharge at a current density of 4.0 A g-1. Furthermore, their electrochemical performance were evaluated with the assembled symmetrical supercapacitors that specific capacitance, energy density and power density could be as high as 130 F g-1, 18.0Wh kg-1 and 4000 kW kg-1.

Meeting Program

5:00 PM–7:00 PM Apr 4, 2018 (America - Denver)

PCC North, 300 Level, Exhibit Hall C-E