Date/Time: 04-04-2018 - Wednesday - 05:00 PM - 07:00 PM
Tyler Howard1 Jeremy Dunklin3 Gregory Forcherio2 Donald Roper4

1, Southeast Missouri State University, Cape Girardeau, Missouri, United States
3, National Renewable Energy Laboratory, Golden, Colorado, United States
2, U.S. Army Research Laboratory, Adelphia, Maryland, United States
4, University of Arkansas, Fayetteville, Arkansas, United States

Thermal dissipation of plasmon energy from gold nanoparticles (AuNPs) dispersed in transparent polymers is important to biotherapeutics, optoelectronics, sensing, and chemical separations. This work evaluated heat dissipated from power extinguished by 16 nm AuNPs with negligible Rayleigh scattering cross-sections dispersed into sub-wavelength, 70-nm polyvinylpyrrolidone (PVP) films at interparticle spacings much less than the resonant wavelength. Compared to super-wavelength films with interparticle spacing near the resonant wavelength, measured optically extinction and temperature increase on a per NP basis decreased as AuNP concentration increased. Change in temperature per NP decreased 22% and optical extinction per NP decreased 35% as AuNP concentration increased from 1.01 to 5.06 x 1015 NP/cm3. The trend and magnitude of measured values were consistent with those from a priori description of optical extinction per NP derived from Maxwell Garnett effective medium theory (EMT) and from coupled diode approximation (CDA). Thermal dissipation measured from the films at particle separations of 130 to 76 nm. Comparison of EMT, CDA, and finite element analysis (FEA) measured results showed the contributions to plasmon-resonant optical extinction and heat dissipation. These results support design and adaptive control of thermal dissipation from plasmonic films.

Meeting Program

5:00 PM–7:00 PM Apr 4, 2018 (America - Denver)

PCC North, 300 Level, Exhibit Hall C-E