AHM Rahman1 Issam Abu-Mahfouz1

1, The Pennsylvania State University, Harrisburg, Harrisburg, Pennsylvania, United States

Hybrid Aluminum Matrix Composites (HAMCs) have been fabricated using powder metallurgy methods. The reinforcements used were alumina (Al2O3) particles and chopped carbon (c)-fibers. The reinforcements were mixed and homogenized in a rotary ball mill. Then the powder mixtures were pressed into a solid mass using uniaxial press and then sintered in a controlled environment. The microstructures were analyzed using scanning electron microscope (SEM) and the different phases formed were detected using X-ray diffraction technology. The mechanical properties such as hardness, tensile stress, and ductility were determined. The initial study found that the aluminum carbide formed in the matrix-fiber interface. This resulted a lower tensile strength of HAMCs. To prevent the carbide formation in the matrix-fiber interface, the fiber reinforcements were coated with metal nano particles.