SM01.03.20 : Electroluminescent Soft Elastomer Actuators with Tunable Luminance and Strain

5:00 PM–7:00 PM Apr 3, 2018 (America - Denver)

PCC North, 300 Level, Exhibit Hall C-E

Ye Rim Lee1 Jongyeop An1 Byung Yang Lee1

1, Korea University, Seoul, , Korea (the Republic of)

Stretchable electroluminescent (EL) devices are essential components for future lighting and display applications. Furthermore, flexible and soft EL devices that can accommodate large mechanical strains such as bending, twisting, stretching and folding have been studied extensively. Recently, there have been some efforts to combine EL devices with soft elastomer actuators that have electroluminescent and actuating properties at the same time. However, these efforts still show complex structures and limited strain values. In this study, we demonstrate a soft actuator that can control the strain and luminance individually by using electrical stimulation. By inserting an EL layer between dielectric elastomer films, we could fabricated and soft actuator with controllable strain and electroluminescence by applying a combination of AC and DC signals. The DC signal controlled the strain of the device by the DC signal, while the AC signal component controlled the luminance of the device. The combination of AC and DC enabled simpler device structure compared to previous reports. The electrodes of the device were fabricated using hybrid structures of silver nanowires and carbon nanotubes. The transmittance of the electrodes was high enough (~88 %) to enable the observation of visible luminance with little degradation in time. The device structure fabricated in this study has much higher strain values (>100 %) than previous study (~60 %) and shows high electroluminescence values (~ 30 cd/m2). Our research is expected to be useful for next generation soft devices and actuators with EL properties.