Description
2, National University of Singapore, Singapore, , Singapore
3, The University of Sydney, Sydney, New South Wales, Australia
4, National Isotope Centre, Lower Hutt, , New Zealand
5, Western Sydney University, Sydney, New South Wales, Australia
6, Northwest University, Shaanxi, , China
7, Monash University, Melbourne, Victoria, Australia
MoS2 nanosheets were doped with vanadium (V) with a variety of concentrations using a hydrothermal method. Raman, X-ray photoelectron spectroscopy and electron paramagnetic resonance results indicate the effective substitutional doping in MoS2. Without V doping, oxides such as MoO2 and MoO3 have been observed, whereas, with 5 at% V doping, the oxide disappears. Magnetic measurements show that room temperature ferromagnetism has been induced by V doping. Magnetization tends to increase with the increased V doping concentration. A very large coercivity up to 1.87 kOe has been observed in 5 at% vanadium doped MoS2, which may attribute to a combination effect of localized charge transfer between V and S ions, pinning effect due to the in-between defects, stress induced by doping and shape anisotropy due to two-dimensional nature of MoS2 ribbons