Shanshan Xiao1 Hui Mei1 Yuekai Yan1 Hui Zhang1 Junchao Xia1 Laifei Cheng1

1, Northwestern Polytechnical University, Xi'an, Shaanxi, China

A novel method for 3D printing of continuous fiber reinforced ceramic matrix composite (CFCMC) structures was achieved by fused deposition modeling (FDM) and pyrolysis of homogenized thermoplastic ceramic precursor inks consisting of thermoplastic resin and ceramic precursor. The inks were found to exhibit excellent thermoplastic properties for 3D printing and pyrolysis into SiOC ceramics when temperatures exceed 850 oC under inert atmosphere. Ceramic density was found to increase with the increasing of the percentage of ceramic precursor content. The pyrolysis caused uniform shrinkage of the samples by 20 % and the shrinkage was independent of the ceramic precursor content. The ceramics were amorphous and compact within the temperature range of 850 oC to 1300 oC. They decomposed into amorphous SiO2 and β-SiC when the temperature reached to 1400 oC, and generated a lot of crack in ceramics. The novel inks were printed into complex lightweight structures with embedded continuous fibers through the continuous fiber FDM printer, which unravels the potential of 3D printing of high-performance CFCMC.