Timothy Pope1 Zachary Kennedy1 Nikhil Mirjankar1 Tamas Varga1 Josef Christ1 David Stephenson1 Rebecca Erikson1 Chris Barrett1 Marvin Warner1

1, Pacific Northwest National Laboratory, Richland, Washington, United States

Additively manufactured (AM) objects are becoming increasingly prevalent in many commercial applications. This shift could lead to an influx of materials and devices of unknown origin flooding the globe, potentially increasing the prevalence of counterfeit goods. A thorough understanding of the chemical and structural composition of these types of objects as well as the raw materials from which they are produced yields useful information of provenance. Measurement techniques such as DSC, pyrolysis-GCMS, X-ray diffraction, and micro computed tomography can be used to determine the detailed chemical composition and structure of AM objects. This information (e.g., organic content of the device and structural features such as porosity or grain size) is being explored for the identification of the source of the raw materials, to elucidate the additive types and content, and the method of manufacturing. Furthermore, to reduce the likelihood of a counterfeit part, functional materials can be incorporated into the raw materials before manufacture to produce signatures that may be readout and maintained on a blockchain platform. As a proof-of-concept, fluorescent nanomaterials were incorporated into an AM object, which can be analyzed through non-destructive techniques to verify the authenticity of the part.