MA04.11.15 : Organic Liquidic Polysilanzane Preceramic Precursor for 3D Inkjet Printing and Surface Coating Applications

5:00 PM–7:00 PM Apr 5, 2018 (America - Denver)

PCC North, 300 Level, Exhibit Hall C-E

Lung-Hao Hu1 Sheng-Chang Wang1

1, Southern Taiwan University of Science and Technology, Tainan, , Taiwan

The conventional techniques for 3D printing ceramic parts are the ceramic powder laser sintering and lithography process that are usually costly in equipment and materials. A low-cost technique for 3D inkjet printing ceramic has been developed via polysilanzane preceramic precursor incorporated with γ-alumina nano powders to form a gel-like preceramic precursor with the aim to be used as the raw material for 3D inkjet printing ceramic parts. The gel-like preceramic precursor is simply extruded for 3D shaping and then is pyrolyzed at 700, 850 and 950 °C, respectively to transform from a polymeric composite to silicon aluminum oxycarbonitride ceramic part that has been characterized by XRD representing an amorphous silicon oxycarbonitride structure coating on the surface of γ-alumina. The Vickers hardness of the silicon aluminum oxycarbonitride (SiAlCNO) ceramic pryrolyed at 850°C is about 225~275 twice higher than that of 6 and 7 series aluminum alloy. The organic liquidic polysilanzane preceramic precursor pyrolyzed at 600 °C to form an amorphous SiCNO ceramic coated on the surface of the anodizing aluminum alloy provides the high resistance to wearing. After the SiCNO coated-anodizing aluminum alloy is worn back and forth by the steel velvet head with the wearing distance, 1.44 km and 2.88 km, the weight loss with each wearing distance is 0 g and 1.8 mg respectively that this result indicates that the SiCNO surface coating on the aluminum alloy provides an extremely hard surface to enhance the anti-wearing capability.