Xiangfan Chen1 Wenzhong Liu2 Biqin Dong1 Henry Ware1 Hao Zhang3 Cheng Sun1

1, Northwestern University, Evanston, Illinois, United States
2, Opticent, Inc, Evanston, Illinois, United States
3, Northwestern University, Evanston, Illinois, United States

Advancements in 3D printing technology have the potential to transform the manufacture of customized optical elements, which today relies heavily on time-consuming and costly polishing and grinding processes. However, the inherent speed-accuracy trade-off seriously constraints the practical applications of 3D printing technology in optical realm. In addressing this issue, here, we report a new method featuring a significantly faster fabrication speed, at 24.54 mm3/h, without compromising the fabrication accuracy required to 3D-print customized optical components. We demonstrated a high-speed 3D printing process with sub-voxel-scale precision (sub 5 mm) and deep subwavelength (sub-7 nm) surface roughness by employing the PµSL process and the synergistic effects from the grayscale photopolymerization and the meniscus equilibrium post-curing methods. Fabricating a customized aspheric lens 5 mm in height and 3 mm in diameter was accomplished in four hours. The 3D-printed singlet aspheric lens demonstrated a maximal imaging resolution of 373.2 lp/mm with low field distortion less than 0.13% across a 2-mm field of view. We attached this lens onto a cell phone camera and captured the colorful fine details of a sunset moth’s wing and the spot on a weevil’s elytra. This work demonstrates the potential of our method to rapidly prototype optical components or systems based on 3D printing.