Bhavana Deore1 Chantal Paquet1 XiangYang Liu1 Arnold Kell1 Olga Mozenson1 Patrick Malenfant1

1, National Research Council Canada, Ottawa, Ontario, Canada

Printed electronics is a disruptive manufacturing technique that combines functional materials and printing to make electronic devices in new form factors and enables innovative products. Printed electronics will yield breakthrough technologies in sensing, displays and wireless communication. In this regard, self-reducible metal-organic decomposition (MOD) inks have been synthesized for the formation of metal conducting layers. The main advantage of MOD inks over conventional flake/nanoparticle inks is that MOD compound allows smooth films at low temperature sintering with high conductivity. The molecular silver inks have ease of sintering and excellent electrical properties; however, the high cost of silver is becoming an issue for printed applications where the main driver for printing is cost. Thus, there is need to develop a low cost ink as an alternative.
In this work, we would like to present results on molecular screen printable copper ink which produces highly conductive, robust to oxidation and solderable printed traces compatible with sintering on PET and Kapton substrate. The sheet resistivity of ~8 to 15 mΩ /sqare/mil can be obtained for 4-20 mil screen printed lines.