Aaron Franklin1

1, Duke University, Durham, North Carolina, United States

Single-walled carbon nanotubes (CNTs) are one of the most versatile electronic materials ever discovered. Electronically, they can be semiconducting or metallic; mechanically, they are flexible yet have a tensile strength greater than steel; and physically they can be centimeters long to just a few nanometers. For nearly two decades, these diverse possibilities have excited and motivated researchers pursuing CNTs for electronic applications. However, thus far the versatility of CNTs has also been their greatest obstacle in terms of purification, precise positioning, and so forth. In this talk, I will discuss how the inherent versatility of CNTs can be appropriately harnessed for enabling certain applications. The tremendous progress in solution-phase processing of nanotubes has opened a path for their most suitable, near-term use as printed thin films. Three recent advances will be presented, including: 1) print-in-place additive electronics; 2) printed sensors for harsh environments; and 3) point-of-care printed biosensors operating in whole blood. Each of these is made possible by drawing from distinct properties of thin-film CNTs; properties unavailable from any other printable material. The fact is, CNTs offer sufficiently unique and reproducible behavior when printed into thin films that they should be given much greater consideration from the printed electronics community. In the company of organic semiconducting inks, and even that of non-printed metal-oxide semiconductors, printed films of CNTs are a standout with significant advantages.