Dimos Poulikakos1

1, ETH Zurich, Zurich, , Switzerland

A great host of nanoscale amounts of matter (nanoparticles) with thermal, optical, mechanical and electrical properties and functionalities drastically different than those of their counterpart bulk materials are often available in colloidal solution from. Such nanomaterials are of critical importance to the development of technologies in many fields, ranging from energy and transportation to biology, electronics and photonics. There is a pressing need for novel, facile, maskless, high yield methodologies for their assembly, handling, characterization and device integration. Here, a remarkably simple process for the maskless direct printing of nanoparticles of all kinds through electrohydrodynamic NanoDrip printing will be presented and the related physics and thermofluidic transport phenomena leading to the tunable formation of in- and out-of-plane functional nanostructures as single entities or large arrays will be explained. Subsequently, a host of demonstrated applications enabled by NanoDrip printing will be discussed ranging from plasmonics, to light design through the controlled printing of quantum dots, to the printing of transparent conductive grids for solar cells and touch screen displays and to nanoscale force sensing devices for cells with unprecedented resolution. Through this, the great potential of EHD NanoDrip printing as an emerging advanced manufacturing methodology, alone or in an additive manner will be illustrated.