Maria Torres Arango1 Domenic Cipollone1 Olatunde Abidakun1 Dimitris Korakakis2 Konstantinos Sierros1

1, West Virginia University, Morgantown, West Virginia, United States
2, West Virginia University, Morgantown, West Virginia, United States

Direct ink writing is a very promising additive manufacturing method that combines the efficient use of materials with bottom-up synthesis. This group of techniques relays strongly on the understanding of the relationships between inks’ processing and resulting materials’ properties.
We use this synergistic approach to explore the potential of additive manufacturing and push the boundaries in metal-oxides’ microstructure engineering. ZnO and TiO2 inks have been investigated using solgel and hybrid (solgel/particle) based inks, respectively. From these, materials’ fundamentals coupled with printing and post-processing conditions are utilized to tune hierarchical microstructure features such as crystalline orientation, surface wrinkling, crystallization, cellular configuration and surface area properties.
These levels of control are of paramount importance for different applications including energy-related as sensors active layers, waste management/water purification systems as photocatalytic reactors, as well as in biomedicine as tunable bio-compatible scaffolds. Additional advantages of our approach include the use of environment-friendly precursors bringing a sustainability focus, imperative towards bridging the gap between lab developments and industry practice. This perspective also enables low-cost fabrication and highly safe materials.
We believe our efforts to constitute a pivotal foundation for shifting the focus of additive manufacturing towards changes in paradigms that enable novel materials with unprecedented characteristics.