poster-icon
Description
Jianhe Guo1 Donglei (Emma) Fan1

1, The University of Texas at Austin, Austin, Texas, United States

In this work, we report an innovative mechanism, the Kirkendall effect, in creating three-dimensional (3D) microporous catalysts with tunable pore sizes for the growth of hierarchic ultrathin graphite foams (HP-UGFs) with unique properties. Employing the Kirkendall effect is one of the first demonstrated for fabricating 3D porous catalysts, where tunable pores of 1.9–8.3 μm are created on 3D interconnected struts (∼100 μm). With the catalysts, we readily synthesized freestanding HP-UGFs that offer higher crystallinity and electric conductivity, larger surface area, as well as enhanced electric invariance to strains compared to those of conventional ultrathin graphite foams. A gauge factor as low as ∼10 at a strain as high as 80% is achieved owing to the unique porous corrugations created on the microstruts of the HP-UGFs. This work may inspire a new paradigm in designing and synthesizing a new type of 3D porous architecture made of 2D materials with controlled local corrugations, which could greatly benefit flexible electronics.

Tags