SM01.04.01 : Patterning and Shape Reconfiguring Liquid Metals for Soft Electronics

8:00 AM–8:30 AM Apr 4, 2018

PCC West, 100 Level, Room 104 AB

Michael Dickey1 Karen Daniels1 Collin Eaker1 Yiliang Lin1

1, North Carolina State University, Raleigh, North Carolina, United States

This talk will discuss efforts to pattern and shape-reconfigure liquid metals as conductive inks for stretchable, soft, and reconfigurable electronics. Alloys of gallium are noted for their low viscosity, low toxicity, and negligible volatility. Despite the large surface tension of the metal, it can be patterned into non-spherical 2D and 3D shapes due to the presence of an ultra-thin oxide skin that forms on its surface. Because it is a liquid, the metal is extremely soft and flows in response to stress to retain electrical continuity under extreme deformation. By embedding the metal into elastomeric or gel substrates, it is possible to form soft, flexible, and conformal electrical components, stretchable antennas, and ultra-stretchable wires that maintain metallic conductivity up to ~800% strain. Thus, these materials are well-suited for soft robotics because they decouple electrical and mechanical properties. In addition to introducing the advantages of these materials for soft robotics, this talk will focus on (1) new ways to pattern the metal utilizing vacuum filling of microchannels, and (2) new ways to manipulate and reconfigure the shape of liquid metals utilizing electrochemical surfce oxidation, which lowers the interfacial tension of the metal. These advances have implications for soft machines and robots that have ultra-soft mechanical properties.