Barthélémy Pradines1 Rémi Arras1 Lionel Calmels1

1, CEMES-CNRS, Toulouse, , France

We present an ab-initio study of the effects of partial atomic disorder on the static and dynamic magnetic properties of the full-Heusler alloys Co2MnSi, Co2MnSn, Co2FeAl and Co2MnAl. These compounds are interesting for spintronic applications because they could possess most of the characteristics required for performant magnetic electrode materials in spin valves or magnetic tunnel junctions. Their exceptional characteristics must however remain in the presence of the alloy disorders that may exist in these compounds.
The spin-polarized relativistic Korringa-Kohn-Rostoker (KKR) method was used with the coherent potential approximation (CPA) for describing partial random disorders intermediate between the L21, D03, B2 and A2 phases of these full-Heusler alloys.
We describe the modification of their magnetization, chemical species spin and orbital magnetic moments, spin polarization at the Fermi level and Gilbert damping parameter, as a function of the disorder rates. These results could be useful for experimentalists, helping them understanding the impact of partial alloy disorders on most of the physical properties that they measure for these compounds.