Anna Cristina Samia1

1, Case Western Reserve University, Cleveland, Ohio, United States

Iron oxide nanoparticles (IONPs) are widely investigated due to their chemical tunability and great potential as diagnostic and therapeutic agents. In magnetic particle imaging (MPI), which is an emerging imaging modality that enables the direct mapping of IONP tracers, the signal generation relies heavily on the magnetization reversal of the IONP tracers. As such, it is essential to tune the IONP’s magnetic properties in order to achieve good MPI image resolution. To date, most studies have focused in optimizing spherical magnetite IONPs in MPI applications. In this presentation, a systematic investigation of the effects of chemical doping and shape anisotropy on the MPI performance of IONP tracers will be discussed. Moreover, the demonstration of focused hyperthermia through an MPI-guided approach (hMPI) will be presented.