talk-icon
Description
Pawan Tyagi1 Tobias Goulet1

1, University of District of Columbia, Washington, District of Columbia, United States

Ability to tailor the nature of the magnetic coupling between two ferromagnetic electrodes can enable the realization of new spintronics device systems. This paper discusses our finding that deposition of an ultrathin tantalum (Ta) on the NiFe top electrode reversed the nature of inter-ferromagnetic electrode coupling. We observed that the deposition of ~ 5 nm Ta on the top of a magnetic tunnel junction with Ta( 2 nm)/Co(5 nm)/NiFe (5 nm)/AlOx( 2 nm)/NiFe (10-15 nm) configuration changed the magnetic coupling between two ferromagnetic electrodes from antiferromagnetic to ferromagnetic. We investigated Ta effect using multiple magnetic characterizations like ferromagnetic resonance, magnetometry, and polarized neutron reflectometry. Ferromagnetic resonance characterization was very sensitive for detecting the changes in magnetic coupling via the insulating spacer. This simple approach of adding Ta film to alter the magnetic coupling can impact the other burgeoning areas like molecular spintronics. We found that preexisting magnetic coupling between two ferromagnetic electrodes impacted the resultant magnetic properties of magnetic tunnel junctions based molecular spintronics devices.

Tags