Description
2, General Motors, Warren, Michigan, United States
With the lowest chemical potential and highest energy density among anode materials, lithium metal becomes the most promising candidate for next-generation rechargeable batteries with high energy density. However, its non–uniform electrodeposition behaviors and spontaneous side–reactions with electrolyte components have caused numerous safety concerns and constrained its applications. Through vapor deposition, a hermetic coating layer of silicate can be readily formed on lithium foil under ambient conditions. Such coatings consist of a “hard” inorganic moiety that helps to suppress lithium dendrites and a “soft” organic moiety that enhances the toughness. Lithium–metal batteries, including Li–LiFePO4 and Li–S batteries, made with such coated anodes show significantly improved lifetime. This work provides a simple yet effective approach stabilizing the interface of lithium metal anodes for advanced rechargeable batteries.