Komal Garde1 Ajit Kelkar1 Shyam Aravamudhan1

1, North Carolina A&T Univ, Greensboro, North Carolina, United States

The application of electrical stimulation to stem cells is currently being explored as a method to facilitate their differentiation into various cell lineages. The potential differentiation of adipose-derived stem cells (ADSCs) to cardiac or neural phenotypes is particularly interesting due to the ubiquitous nature of adipose cells throughout the body, their ease of extraction and rapid expansion. In this work, the electrical stimulation is delivered using penetrating nanoelectrodes Penetrating electrodes provide direct access to the cell’s interior in a minimally invasive fashion, and with enhanced cell-electrode coupling. Nanoelectrodes (pillars and fins) of controlled height, diameter, and density are fabricated on silicon using nanofabrication techniques. Extensive experiments confirmed the ability of the nanoelectrodes to penetrate cells. ADSC were then modulated by applying electrical stimulus of 500-500 mV/cm for 15 minutes per day for 5 days. The differentiated neural phenotypes were validated using various stem cell surface markers and electrophysiology measurements.