John Rogers1

1, Northwestern University, Evanston, Illinois, United States

Recent advances in materials, device designs and assembly techniques allow for electronic/optoelectronic systems capable of establishing intimate, chronically stable interfaces to the brain. This talk summarizes recent progress in two areas (1) cellular-scale optoelectronic devices that inject into targeted regions of the deep brain for optogenetic stimulation/inhibition and wireless recording of neural activity and (2) thin, conformal sheets of electronics that laminate onto the surfaces of the brain for large-area, high-speed mapping of electrophysiological behavior.