Da-Wei Wang1

1, University of New South Wales, Sydney, New South Wales, Australia

Electrochemical capacitors (ECs) provide appealing energy storage solutions, because of their higher power density, better safety and greater life span relative to lithium batteries. Rational design and synthesis of two-dimensional (2D) materials (such as graphene, MXene, transition metal dichalcogenides, etc.) has shown great impact for transformative technological advances for ECs. We will discuss the discovery of a 2D conductive supramolecular hybrid framework material, as well as its structure and relevant electrochemical properties for ECs. The 2D framework comprises periodically stacked 2D nanosheets with 1.2-nm basal spacing. In contrast to the pre-existing framework materials (for example MOFs), this conductive 2D framework has large density (~1.8 g cm−3) and low porosity (16.5 m2 g−1). The electrochemical performance (up to 732 F cm−3 in neutral aqueous electrolytes) and pseudocapacitive intercalation mechanism will be highlighted.