M. Ibrahim Dar1 Neha Arora1 Shaik Mohammed Zakeeruddin1 Michael Grätzel1

1, Ecole Polytechnique Federale de Lausanne, Lausanne, , Switzerland

Organic-inorganic perovskites solar cells have emerged in a short span of time as a potential photovoltaic technology. However, the instability of these PSCs under operational conditions has impeded their large-scale deployment. Such instability issues could arise from the degradation of absorber layer itself or by virtue of the charge extraction layers. To mitigate these issues, we have explored the following promising strategies. 1) Crystal cross-linking to passivate the perovskite surfaces and grain boundaries; as the ionic nature of organic-inorganic perovskites renders them inherently sensitive towards reactive species, such as water molecules present in the form of a moisture. 2) Identification of new absorber material which contains less electrophilic organic cations and thermodynamically more stable inorganic frame work, and 3) Using all-inorganic charge extraction layers which are extremely cheap and stable. In my presentation, how one could achieve extraordinary operational stability by employing these highly promising strategies will be discussed.


1. Li, X.; Dar, M. I. et al. Nat. Chem. 2015, 7, 703-711.
2. Arora, N., Dar, M. I.* et al. Science 2017, 358, 768-771
3. Arora, N., Dar, M. I.* et al. Nano Letters 2016, 16, 7155-7162.