talk-icon
Description
Jayan Thomas1

1, University of Central Florida, Orlando, Florida, United States

Jayan Thomas1,2,3*, Nitin Choudhary1, Chao Li1, Yeonwoong Jung1,2,4
1NanoScience Technology Center, University of Central Florida, Orlando, FL 32826.
2Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816.
3College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816.
4Electrical & Computer Engineering, University of Central Florida, Orlando, Florida 32816.
Supercapacitors have gained considerable attention as an energy storage device for many applications that require high power density including electric cars, heavy machinery, and aircrafts. Recently, many new materials have been proposed and developed for capacitive energy storage. Among these materials, 2-dimensional (2D) transition metal dichalcogenides (TMD) are an important category because of its remarkable active surface area and mechanical robustness for capacitive energy storage. In this presentation, we will deliberate the usefulness of TMDs for supercapacitor electrode fabrication. Especially, we will discuss the recent development of a 1D/2D (1D WO3 core/2D WS2 shell) nanowire electrode grown on a tungsten metal foil current collector electrode. This core-shell geometry facilitates charge storage on the outside shell and charge transport through the inside core. The encouraging cycling stability coupled with high mechanical stability under mechanical deformation of the assembled supercapacitor make these electrode materials very attractive for the construction of supercapacitors.

Tags