poster-icon
Description
Hyungho Kwon1 Byung Yang Lee1

1, Korea University, Seoul, , Korea (the Republic of)

Recently, light and stable energy conversion and storage resources for portable devices have attracted much attention. Among them, flexible supercapacitors are emerging as energy storage sources for wearable devices due to their high energy and power density, light weight, and flexible mechanical properties. Of the various materials that can be used as supercapacitor electrodes, conductive polymers have received much attention due to their low cost, easy fabrication and excellent electrochemical properties. In particular, various attempts for using conductive polymers such as polypyrrole as supercapacitor electrode materials have been made due to their high electrochemical capacitance, low density and mechanical flexibility. However, its wide use has been hindered because of its low cycle stability and poor rate capability. In this study, we demonstrate a flexible electrode for supercapacitor applications based on a hybrid structure of reduced graphene oxide (r-GO), single-walled carbon nanotubes (SWCNTs), and polypyrrole nanotubes (PPNTs). The r-GO/SWCNT combination resulted in enhanced cycle stability while the use of electrochemically deposited PPNTs maximized the electrochemical capacitance. The hybrid structure of r-GO/SWCNT/PPNT films showed high conductivity and large surface area, resulting in improved electrochemical performance, good cycle and rate stability compared to previous works. We expect that our hybrid structure of r-GO/SWCNT/PPNT film can open new possibilities for high performance flexible energy storage devices and wearable electronics.

Tags