talk-icon
Description
Sergiu Draguta1 Jeffrey Christians2 Joseph Luther2 Masaru Kuno1

1, University of Notre Dame, South Bend, Indiana, United States
2, National Renewable Energy Laboratory, Denver, Colorado, United States

Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley−Queisser limit of 31%. To increase these PCE values, there is pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic accounting of charge recombination processes in high efficiency (18-19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the first time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially-resolved parameters, in turn, reveal factors which limit these state-of-the-art hybrid perovskite solar cells.

Tags