Qiang Li1

1, Brookhaven National Lab, Upton, New York, United States

Recent discoveries of new phenomena due to interacting Dirac fermions across vastly different energy and length scales have led to a fascinating convergence between condensed matter physics and high energy nuclear physics. Dirac/Weyl semimetals have a linear dispersion that leads to the electrons near the Fermi energy behaving like Dirac fermions. Topological materials, such as ZrTe5 Dirac semimetal, hold promise of transmitting and processing information and energy in new ways. Many of the topological materials originate from the thermoelectric compounds. In this presentation, I will present our studies on the transport properties of Dirac/Weyl semimetals, with a view on thermoelectric applications. Dirac dispersion can give rise to large thermopower in a magnetic field and the Nernst effect. Combined with an ultrahigh carrier mobility, Dirac/Weyl semimetals may be exploited for thermomagnetic refrigeration.