Rainie Nelson1 Yujie Wang1 Matthew Panthani1

1, Iowa State University, Ames, Iowa, United States

Colloidal semiconductor nanomaterials offer unique opportunities for electronic and photonic applications. However, many of these materials contain elements that are toxic, exhibit poor stability, or are chemically incompatible with a target application. A potential alternative to conventional quantum dots that could overcome these challenges are colloidal group IV semiconductors with nanoscale dimensions. Quantum-confined Group IV nanomaterials exhibit optical properties that can be tuned from the visible with potential for mid-infrared properties by modifying composition. Here, I will present our recent results related to the synthesis of Group IV alloy nanocrystals as well as atomically-thin sheets of Group IV materials (e.g., silicane) with unique optical properties. I will address synthetic challenges that are specific to Group IV nanomaterials, surface functionalization strategies, and our progress in characterizing the optical properties of these materials.