Jiatao Zhang1 2

1, Beijing Institute of Technology, Beijing, , China
2, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, , China

The precise control of hetero-interface and doping induced band gap engineering, in colloidal semiconductor based hetero-nanocrystals (metal/semiconductor) and doped nanocrystals, is very important for the efficient energy or charge transfer through hetero-interface and then their novel optoelectronic properties exploration and their new energy, new optoelectronic devices applications. Growth of monocrystalline semiconductor based metal/semiconductor hybrid nanocrystals (core/shell and heterodimer) with modulated composition, morphology and interface strain are the prerequisite for exploring their plasmon-exciton coupling, efficient electron/hole separation, and enhanced photoctalysis properties. We realized nanoscale monocrystalline growth of the semiconductor shell on metal nanocrystals, the precise relative positions and hetero-interface between original building blocks to precisely synthesize metal/semiconductor hetero-nanostructures and hetero-valent doped semiconductor nanostructures, in particular the hetero-valent dopant engineering. These controls enable the fine tuning of doped level, plasmon-exciton coupling, Plasmon enhanced photocatalytic performance and enhanced photovoltaic, electrical properties applications.
1.J. Zhang, Y. Tang, K. Lee, M. Ouyang, Nature 2010, 466, 91.
2.J. Zhang, Y. Tang, K. Lee, M. Ouyang, Science 2010, 327, 1634.
3.Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387.
4.H.Qian, J. Zhang*, etc., NPG Asian Mater. (2015) 7, e152; doi:10.1038/am.2014.120.
5.J. Gui, J. Zhang*, etc., Angew. Chem. Int. Ed. 2015, 543683-3687.
6.J. Liu, Q. Zhao, J. Zhang*, etc., Adv. Mater. 2015, 27,2753-2761.
7.M. Ji, M. Xu, J. Zhang*, etc. Adv. Mater. 2016, 28, 3094–3101.
8.J. Zhang*, Q. Di, etc. J. Phys. Chem. Lett.2017, 8, 4943-4953. (Invited perspective)