Lia Stanciu1

1, Purdue University, West Lafayette, Indiana, United States

The few lateral flow assays (LFAs) established for detecting the endocrine disrupting chemical (EDC) bisphenol A (BPA) have employed citrate-stabilized gold nanoparticles (GNPs), which have inevitable limitations and instability issues. To address these limitations, we developed more stable sensitive lateral flow assay by designing strategies for modifying the surfaces of gold nanostructures with polyethylene glycol and then testing their effectiveness and sensitivity toward BPA in an LFA.
To further enhance detection, the work was extended to the incorporation of gold nannostructures into the design of a surface-enhanced Raman scattering lateral flow assay (SERS-LFA). The assay includes high-SERS-performance gold nanoparticles, i.e., 40 nm gold nanostars (GNSs), and 4-aminothiolphenol (4-ATP) as a Raman reporter. To demonstrate the performance of this SERS-LFA kit toward BPA detection, we tested BPA stock solutions with concentrations ranging from 0 to 32 ppb. Without the application of any enhancement strategy, this modified BPA LFA can achieve a naked-eye limit of detection (LOD) of 0.8 ng/mL, which is 12.5 times better than the LOD of other reported BPA LFAs, and a quantitative LOD of 0.472 ng/mL. The limit of detection for the SERS signals was 0.074, which was 202 and 8 times more sensitive than those of visual intensity and color intensity quantification, respectively. The range of quantification of the SERS signals doubled compared to that of color intensity quantification.